
Verilog - Operators

I Verilog operators operate on several data types to produce an output

I Not all Verilog operators are synthesible (can produce gates)

I Some operators are similar to those in the C language

I Remember, you are making gates, not an algorithm (in most cases)

Verilog - Operators

Arithmetic Operators

I There are two types of operators: binary and unary
I Binary operators:

I add(+), subtract(-), multiply(*), divide(/), power(**), modulus(%)

//suppose that: a = 4’b0011;

// b = 4’b0100;

// d = 6; e = 4; f = 2;

//then,

a + b //add a and b; evaluates to 4’b0111

b - a //subtract a from b; evaluates to 4’b0001

a * b //multiply a and b; evaluates to 4’b1100

d / e //divide d by e, evaluates to 4’b0001. Truncates fractional part

e ** f //raises e to the power f, evaluates to 4’b1111

//power operator is most likely not synthesible

If any operand bit has a value ”x”, the result of the expression is all ”x”.
If an operand is not fully known the result cannot be either.

Verilog - Operators

Arithmetic Operators (cont.)
Modulus operator yields the remainder from division of two numbers
It works like the modulus operator in C
Modulus is synthesible

3 % 2; //evaluates to 1

16 % 4; //evaluates to 0

-7 % 2; //evaluates to -1, takes sign of first operand

7 % -2; //evaluates to 1, takes sign of first operand

Verilog - Operators

Arithmetic Operators (cont.)
I Unary operators

I Operators ”+” and ”-” can act as unary operators
I They indicate the sign of an operand

i.e., -4 // negative four

+5 // positive five

!!! Negative numbers are represented as 2’s compliment numbers !!!
!!! Use negative numbers only as type integer or real !!!
!!! Avoid the use of <sss>’<base><number >in expressions !!!
!!! These are converted to unsigned 2’s compliment numbers !!!
!!! This yields unexpected results in simulation and synthesis !!!

Verilog - Operators

Arithmetic Operators (cont.)
I The logic gate realization depends on several variables

I coding style
I synthesis tool used
I synthesis constraints (more later on this)

I So, when we say ”+”, is it a...
I ripple-carry adder
I look-ahead-carry adder (how many bits of lookahead to be used?)
I carry-save adder

When writing RTL code, keep in mind what will eventually be needed
Continually thinking about structure, timing, size, power

Verilog - Operators
Arithmetic Operators (cont.)

16-bit adder with loose constraints:

set_max_delay 2 [get_ports sum*]

max delay = 0.8ns, area = 472 = 85 gates

Verilog - Operators
Arithmetic Operators (cont.)

16-bit adder with tighter constraints:

set_max_delay 0.5 [get_ports sum*]

max delay = 0.5ns, area = 2038 = 368gates

Verilog - Operators

Logical Operators

I Verilog Logical Operators
I logical-and(&&) //binary operator
I logical-or(||) //binary operator
I logical-not(!) //unary operator

//suppose that: a = 3 and b = 0, then...

(a && b) //evaluates to zero

(b || a) //evaluates to one

(!a) //evaluates to 0

(!b) //evaluates to 1

//with unknowns: a = 2’b0x; b = 2’b10;

(a && b) // evaluates to x

//with expressions...

(a == 2) && (b == 3) //evaluates to 1 only if both comparisons are true

Verilog - Operators

Logical Operators (.cont)
I Logical operators evaluate to a 1 bit value

I 0 (false), 1 (true), or x (ambiguous)

I Operands not equal to zero are equivalent to one

I Logical operators take variables or expressions as operators

Verilog - Operators

Relational Operators (.cont)

I greater-than (>)

I less-than (<)

I greater-than-or-equal-to (>=)

I less-than-or-equal-to (<=)

Relational operators return logical 1 if expression is true, 0 if false

//let a = 4, b = 3, and...

//x = 4’b1010, y = 4’b1101, z = 4’b1xxx

a <= b //evaluates to logical zero

a > b //evaluates to logical one

y >= x //evaluates to logical 1

y < z //evaluates to x

!!! Note: These are expensive and slow operators at gate level !!!

Verilog - Operators
Equality Operators - ”LT” is big and slow

//8-bit less than detector

//if a is less than b, output is logic one

module less8(

input [7:0] a,b,

output z

);

assign z = (a < b) ? 1’b1 : 1’b0;

endmodule

Results from synthesis:

U7U8 U6

U9

U5

U13

...

...

...

U10

U4
U3

U12

...

U20

...

...

U14

Verilog - Operators

Equality Operators

I logical equality (==)

I logical inequality (!=)

I logical case equality (===)

I logical case inequality (!==)

Equality operators return logical 1 if expression is true, else 0
Operands are compared bit by bit
Zero filling is done if operands are of unequal length (Warning!)
Logical case inequality allows for checking of x and z values
Checking for X and Z is most definitely non-synthesible!

Verilog - Operators

Equality Operators (cont.)

//let a = 4, b = 3, and...

//x = 4’b1010, y = 4’b1101,

//z = 4’b1xxz, m = 4’b1xxz, n = 4’b1xxx

a == b //evaluates to logical 0

x != y //evaluates to logical 1

x == z //evaluates to x

z === m //evaluates to logical 1

z === n //evaluates to logical 0

m !== n //evaluates to logical 1

Verilog - Operators
Bitwise Operators

I negation (∼), and(&), or(|), xor(^), xnor(^- , -^)

I Perform bit-by-bit operation on two operands (except ∼)

I Mismatched length operands are zero extended

I x and z treated the same

bitwise AND bitwise OR bitwise XOR bitwise XNOR

0 1 x 0 1 x 0 1 x 0 1 x

0 0 0 0 0 0 1 x 0 0 1 x 0 1 0 x

1 0 1 x 1 1 1 1 1 1 0 x 1 0 1 x

x 0 x x x x 1 x x x x x x x x x

bitwise negation result

0 1

1 0

x x

Verilog - Operators

Bitwise Operators (cont.)

I Logical operators result in logical 1, 0 or x

I Bitwise operators results in a bit-by-bit value

//let x = 4’b1010, y = 4’b0000

x | y //bitwise OR, result is 4’b1010

x || y //logical OR, result is 1

Verilog - Operators
Bitwise operators give bit-by-bit results

//8-bit wide AND

module and8(

input [7:0] a,b,

output [7:0] z

);

assign z = a & b;

endmodule

U12

U9

U14

U16

U11

U13

U15

U10

z[5]

b[1]

z[6]

b[0]

a[7]
z[7]

a[6]

a[5]

a[4]

a[3]

b[2]

a[2]

b[3]

b[4]

b[5]

a[0]

b[6]

a[1]

b[7]

z[0]

z[1]

z[2]

z[3]

z[4]

z[7:0]

a[7:0]

b[7:0]

a[7:0]

b[7:0]

z[7:0]

Verilog - Operators

Reduction Operators

I and(&), nand(∼&), or(|), nor(∼|) xor(^), xnor(^∼,∼^)

I Operates on only one operand

I Performs a bitwise operation on all bits of the operand

I Returns a 1-bit result

I Works from right to left, bit by bit

//let x = 4’b1010

&x //equivalent to 1 & 0 & 1 & 0. Results in 1’b0

|x //equivalent to 1 | 0 | 1 | 0. Results in 1’b1

^x //equivalent to 1 ^ 0 ^ 1 ^ 0. Results in 1’b0

A good example of the XOR operator is generation of parity

Verilog - Operators

Reduction Operators

//8-bit parity generator

//output is one if odd # of ones

module parity8(

input [7:0] d_in,

output parity_out

);

assign parity_out = ^d_in;

endmodule

U7

U10

U9

U8 U6

n5

n6

n8 n7

d_in[6]

d_in[5]

d_in[4]

d_in[3]

d_in[7]

d_in[2]

d_in[1]

d_in[0]

parity_outd_in[7:0]

d_in[7:0]

parity_out

Verilog - Operators

Shift Operators

I right shift (>>)

I left shift (<<)

I arithmetic right shift (>>>)

I arithmetic left shift (<<<)

I Shift operator shifts a vector operand left or right by a specified
number of bits, filling vacant bit positions with zeros.

I Shifts do not wrap around.

I Arithmetic shift uses context to determine the fill bits.

// let x = 4’b1100

y = x >> 1; // y is 4’b0110

y = x << 1; // y is 4’b1000

y = x << 2; // y is 4’b0000

Verilog - Operators

Arithmetic Shift Operators
I arithmetic right shift (>>>)

I Shift right specified number of bits, fill with value of sign bit if
expression is signed, othewise fill with zero.

I arithmetic left shift (<<<)
I Shift left specified number of bits, filling with zero.

Verilog - Operators

Concatenation Operator {,}
I Provides a way to append busses or wires to make busses

I The operands must be sized

I Expressed as operands in braces separated by commas

//let a = 1’b1, b = 2’b00, c = 2’b10, d = 3’b110

y = {b, c} // y is then 4’b0010

y = {a, b, c, d, 3’b001} // y is then 11’b10010110001

y = {a, b[0], c[1]} // y is then 3’b101

Verilog - Operators

Replication Operator { { } }
I Repetitive concatenation of the same number

I Operands are number of repetitions, and the bus or wire

//let a = 1’b1, b = 2’b00, c = 2’b10, d = 3’b110

y = { 4{a} } // y = 4’b1111

y = { 4{a}, 2{b} } // y = 8’b11110000

y = { 4{a}, 2{b}, c } // y = 8’b1111000010

Verilog - Operators

Conditional Operator ?:
I Operates like the C statement

I conditional expression ? true expression : false expression ;

I The conditional expression is first evaluated
I If the result is true, true expression is evaluated
I If the result is false, false expression is evaluated
I If the result is x:

I both true and false expressions are evaluated,...
I their results compared bit by bit,...
I returns a value of x if bits differ, OR...
I the value of the bits if they are the same.

This is an ideal way to model a multiplexer or tri-state buffer.

Verilog - Operators
Conditional Operator (cont.)

//8-bit wide, 2:1 mux

module mux2_1_8wide(

input sel,

input [7:0] d_in1, d_in0,

output [7:0] d_out

);

assign d_out = sel ? d_in1 : d_in0;

endmodule

U16

U12

U13

U14

U15

U11

U10

U17

d_out[7]

d_out[6]

sel

d_out[4]

d_out[2]

d_in0[1]

d_in0[2]

d_out[0]

d_in0[3]

d_in1[7]

d_in0[4]

d_in0[5]

d_in1[6]

d_in0[6]

d_in1[5]

d_in1[4]

d_in0[7]

d_in1[3]

d_in1[2]

d_in1[1]

d_in1[0]

d_in0[0]

d
_o
u
t[7

:0
]

d
_in

1
[7
:0
]

d
_in

0
[7
:0
]

d_in0[7:0]

d_in1[7:0]

sel

d_out[7:0]

Verilog - Operators
Conditional Operator (cont.)

//8-bit wide,

//active-low enabled tri-state buffer

module ts_buff8(

input [7:0] d_in,

input en_n,

output [7:0] d_out

);

assign d_out = ~en_n ? d_in : 8’bz;

endmodule

d_out_tri[4]

U2

d_out_tri[1]

d_out_tri[6]

d_out_tri[3]

d_out_tri[0]

d_out_tri[5]

d_out_tri[2]

d_out_tri[7]

d_out[4]

d_out[5]

d_in[7]

d_out[6]d_in[6]

d_out[7]

d_in[5]

d_in[4]

d_in[3]

d_in[2]

d_in[1]

d_in[0]

n16

en_n

d_out[0]

d_out[1]

d_out[2]

d_out[3]

d
_in

[7
:0
]

d
_o
u
t[7

:0
]

en_n

d_in[7:0]

d_out[7:0]

Verilog - Operators

More Lexical Conventions

I The ”assign” statement places a value (a binding) on a wire

I Also known as a continuous assign

I A simple way to build combinatorial logic

I Confusing for complex functions

I Must be used outside a procedural statement (always)

//two input mux, output is z, inputs in1, in2, sel

assign z = (a | b);

assign a = in1 & sel;

assign b = in2 & ~sel;

Verilog - Operators

Some More Lexical Conventions

I The order of execution of the assign statements is unknown

I We must fake parallel execution... gates operate in parallel

I The assign statements ”fire” when the RHS variables change

I RHS = a, b, in1, in2, sel

I The values of a, b, and z are updated at the end of the timestep

I In the next time step if variables changed the next result is posted

I This repeats until no further changes occur

I Then...... time advances

//two input mux, output is z, inputs in1, in2, sel

assign z = (a | b);

assign a = in1 & sel;

assign b = in2 & ~sel;

